THOUSANDS OF FREE BLOGGER TEMPLATES

Senin, 21 November 2011

KOMBINASI DAN PERMUTASI

Kombinasi
 C dari sebuah himpunan S adalah himpunan bagian dari S.
C \subseteq S
Sebagai contoh, misalkan terdapat suatu kumpulan buah: apel, jeruk, mangga, pisang. Maka {apel, jeruk} dan {jeruk, mangga, pisang} adalah merupakan kombinasi dari kumpulan tersebut. Seluruh himpunan bagian yang mungkin dibentuk dari kumpulan buah tersebut adalah:
  • tidak ada buah apa pun
  • satu buah:
    • apel
    • jeruk
    • mangga
    • pisang
  • dua buah:
    • apel, jeruk
    • apel, mangga
    • apel, pisang
    • jeruk, mangga
    • jeruk, pisang
    • mangga, pisang
  • tiga buah:
    • apel, jeruk, mangga
    • apel, jeruk, pisang
    • apel, mangga, pisang
    • jeruk, mangga, pisang
  • empat buah:
    • apel, jeruk, mangga, pisang
Kombinasi r dari sebuah himpunan S, berarti dari himpunan S diambil elemen sebanyak r untuk dijadikan sebuah himpunan baru. Dalam hal kumpulan buah di atas, himpunan {apel, jeruk, pisang} adalah sebuah kombinasi 3 dari S, sedangkan {jeruk, pisang} adalah sebuah kombinasi 2 dari S.
Banyaknya kombinasi r dari sebuah himpunan berisi n elemen dapat dihitung tanpa harus memperhatikan isi dari himpunan tersebut. Besarnya dinyatakan dengan fungsi:
C_r^n = \frac{n!}{r!(n-r)!}
Fungsi C_r^n dalam banyak literatur dinyatakan juga dengan notasi {n \choose r}.
Sebagai contoh, tanpa harus mengetahui elemen himpunan {apel, jeruk, mangga, pisang}, banyaknya kombinasi 3 dari himpunan tersebut dapat dihitung:
C_3^4 = \frac{4!}{3!(4-3)!} = 4

[sunting]Sifat rekursif dari Kombinasi

Kombinasi dapat dibentuk dari dua kombinasi sebelumnya. Ini mengakibatkan banyaknya kombinasi juga bersifat rekursif:
C^n_r = C^{n-1}_{r-1} + C^{n-1}_{r}
PERMUTASI Coba perhatikan contoh-contoh di bawah untuk memahami Permutasi dalam konsep Peluang pada pelajaran Matematika. Contoh I: {a,b,c} Jika dipilih 2 dari 3 unsur tersebut, maka banyaknya permutasi dari 3 unsur setiap pengambilan 2 unsur adalah 6, yaitu ab, ba, ac, ca, bc, cb. Ditulis 3P2 = 6.Contoh II: {a,b,c} maka, banyaknya permutasi dari 3 unusr setiap pengambilan 3 unsur adalah 6, yaitu abc, acb, bac, bca, cab, cba. Ditulis 3P3 = 6 RUMUS
    
PERBEDAAN KOMBINASI DAN PERMUTASI Salah satu perbedaan antara Permutasi dan Kombinasi adalah jika Permutasi maka perbedaan urutan menjadikan perbedaan makna, sementara di Kombinasi perbedaan urutan tidak akan menjadikan perbedaan makna. Contoh: {a,b,c} pengambilan 2 unsur dari 3 unsur jika menggunakanpermutasi maka akan diperoleh hasil ab, ba, ac, ca, bc, cb. Tetapi jika menggunakan kombinasi hasil yang diperoleh adalah ab, ca, bc. Contoh lain permutasi: ada nomor kendaraan di Indonesia yaitu AB (Jogjakarta dan sekitarnya), tetapi apabila dibalik maka menjadi BA (Padang), maka terlihat perbedaan maknanya. Contoh lain kombinasi: Ada dua titik A dan B, dihubungkan oleh satu garis. Maka garis AB = BA, yang berarti tidak menyebabkan perbedaan makna.

0 komentar: